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Abstract

The evolution of risk under climate change depends both on how altered natural systems
affect hazards and how humans respond. To evaluate endogenous adaptation to wildfire risk
we estimate an empirical model of wildfire management that identifies the effect of threatened
resources on wildfire suppression. Working with a state-of-the-art wildfire simulation tool we
pilot the synthesis of ecological and economic models for improved environmental risk assess-
ment. Results of this analysis highlight the importance of ecological processes and endogenous
suppression responses for the housing stock (quantities and values) and for predicting potential
property losses from climate-driven increases in wildfire hazard.
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The effects of climate change on physical, biological, and human systems are expected to become

more severe in the coming decades, increasing risks to human health and well-being (Pachauri et al.,

2014). Damages from wildfires and floods, heat-related mortality, and the spread of vector- and

water-borne diseases are some of the anticipated impacts. Understanding and predicting climate-

driven changes in risk is critical for many sectors of the economy, including insurance, real estate,

and health care, in addition to government programs, policies, and infrastructure investments.

How risks evolve under climate change will depend on how natural systems are altered, as well

as on human behavioral responses. For example, increased wildfire activity in the western U.S.

has been documented in recent decades, and attributed to changes in temperature, precipitation,

and vegetation moisture (Westerling et al., 2006). How this translates into human impacts, such as

property damages, will depend in part on how humans respond to wildfires through fire suppression,

vegetation management, and decisions about where to build houses. Similarly, to understand how

humans will be affected by vector-borne diseases, such as malaria, it is necessary to understand

how their spread is driven by climatic and ecological factors (e.g. Ogden et al., 2014) as well as the

steps that humans take to mitigate and avoid disease risks. In other words, accurate assessment of

climate change risks must include a careful treatment of endogenous adaptation. A recent study on

sea-level rise by Desmet et al. (2018) finds that ignoring endogenous adaptation results in estimates

of global real GDP loss that are 40 times higher than with adaptation.

Risk is determined by three factors: hazard, exposure, and vulnerability. The hazard is the event

that causes damages (e.g., a 2-meter rise in the sea level), exposure is the assets that could potentially

be affected by the hazard (e.g., the value of real estate in low-lying areas), and vulnerability is the

likelihood that the assetswill be damaged. Economic studies of endogenous adaptation have focused

on how humans are likely to reduce exposure and vulnerability in response to increased risk from
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climate change. For example, Desmet et al. (2018) and Balboni (2017) study how human migration

and changes in production and trade patterns can reduce exposure to sea-level rise. Hinkel et al.

(2014) provide global estimates of damages from sea-level rise that incorporate endogenous demand

for infrastructure that reduces vulnerability. Analyses of heat-related mortality have emphasized

how air conditioning reduces exposure to high temperatures (e.g. Barreca et al., 2016). Studies of

the agricultural sector (e.g. Mendelsohn, Nordhaus, & Shaw, 1994; Burke & Emerick, 2016) have

typically measured implicit adaptation, the response of outcomes like farmland prices or crop yields

to differences or changes in climate. Studies of explicit adaptation in agriculture have focused on

strategies that reduce exposure (e.g., changes in planting dates) or vulnerability (e.g., irrigation,

crop switching, and use of new seed varieties) to extreme weather (Carter et al., 2018).

In this paper, we study fire suppression as an adaptive response to wildfire risk. This is an

important topic of inquiry for three reasons. First, unlike in the examples discussed above, fire

suppression reduces and ultimately eliminates the hazard itself (Baylis & Boomhower, 2019).1

Although hazard reduction is the focus of mitigation studies (e.g., carbon taxes to limit warming),

this margin has not been examined in the climate change literature on adaptation.2 Second,

predictions of future wildfire risks have emphasized biophysical factors (weather, fuel volume and

moisture contents, etc.), and given little attention to the potential for adaptive human responses

(Syphard et al., 2019). For example, Mann et al. (2016) and Syphard et al. (2019) model the effects

of housing density, road networks, and proximity to population centers on wildfire characteristics

1Wildfire risk can also be mitigated through reductions in exposure (e.g., building houses in low fire-risk locations)
and vulnerability (e.g., managing vegetation near buildings).

2Vector control through spraying of insecticides is another case of direct hazard reduction. Numerous studies predict
how vector-borne diseases (malaria, dengue fever, West Nile virus, Lyme disease) will spread under climate change
(Bouzid et al., 2014; Harrigan et al., 2014; Simon et al., 2014; Ryan et al., 2019), focusing on factors such as
temperature, precipitation, and landscape features. None of these studies account for endogenous adaptation to
increased disease risk.
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and impacts (e.g., fire sizes, structure losses). However, these studies do not distinguish whether

these factors indicate an adaptive response to wildfire risk, or are just correlates of exposure or

vulnerability.3 Finally, evidence that climate change is increasing wildfire activity in the western

U.S. (Westerling et al., 2006), together with the recent, devastating fires in California, heightens

the need to understand mechanisms for reducing wildfire risk.

Wildfire is an exceedingly complex spatial and dynamic phenomenon. This paper is a first step

towards understanding how humans adapt to wildfire risk by allocating suppression effort. We

combine a bio-physical model of potential wildfire spread with data on actual ignition points and

burn scars to identify the determinants of the final extent of a given fire’s burn area. Our analysis

emphasizes the behavioral response of suppression activities to the nature of the housing stock

lying in a fire’s path, which is indicative of a fire’s potential cost. Our study highlights the role

of hazard reduction in determining the eventual scale and scope of climate change impacts—with

a long-run goal of imbedding such response pathways in integrated modeling exercises that will

inform future policy-making.

Focusing our analysis on the western U.S., we explicitly model the relationship between the built

environment and fire spread in a manner that allows us to infer how fire managers allocate resources

to protect housing assets and human populations within individual wildfire incidents. In a departure

from the reduced-form wildfire studies referenced above, we make use of a fire simulation model

developed by the U.S. Forest Service and used in the management of actual wildfire incidents. The

fire simulation model, known as Minimum Travel Time (MTT), integrates spatial data as well as

time-varying vegetation and winds data to predict wildfire behavior on the landscape in absence

3For example, more houses in an area could reduce structure loss by inducing more fire suppression effort, but increase
it by raising the exposure of properties to wildfire risk.
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of suppression. We then estimate a spatial-dynamic model of fire spread and suppression using

the observed spatial distribution of human assets and landscape characteristics, which determine

suppression benefits and costs, as a proxy for unobserved suppression effort. Importantly, assets

at risk may be spatially-correlated with other physical factors that affect fire spread (e.g. fuels and

topography). A critical feature of our approach is our use of predictions from the MTT model to

holistically condition on physical determinants of wildfire spread. Contrasting fire spread across

locations where wildfire behavior is similar but assets at risk are different allows us to attribute the

effects of assets at risk on fire spread to suppression effort on behalf of those assets.

We find that the probability that a fire ceases its spread increases as fire approaches assets of

concern to fire managers, even after controlling for variation in simulated fire behavior. We find

that, ceteris paribus, increasing either the number, average value, or total value of houses at a given

location within a fire’s potential path markedly decreases the probability that the fire burns through

said location. These differences almost certainly reflect the impact of fire suppression activities

and are likely to have meaningful effect on the overall costs of structure loss due to climate-driven

increases in wildfire.

The paper will proceed as follows. In the next section, we will provide some background on

wildfires and wildfire management within the western U.S. We then develop a simple model of

wildfire management. This model is useful for motivating the empirical spatial duration model

used in the econometric analysis. It also provides qualitative predictions regarding the factors that

should affect allocation of suppression effort. In section 4, we describe the econometric spatial

duration model. We describe the data, including data derived from USFS fire simulation models,

in section 5. We then present results, and conclude with a discussion of implications of the results

for wildfire management and models of impacts due to climate change.
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2 The wildfire suppression decision environment

Fire managers operate within a highly complex decision-making environment with respect to both

the institutional setting and the resource they are tasked with managing. Fires are spatial-dynamic

phenomena, which may spread quickly across landscapes comprising multiple landowners, both

private and public. Wildfires are also infrequent: the likelihood that a plot of land burns in a given

year is usually low. Tominimize fixed costs associatedwithmaintaining firemanagement resources,

a system has evolved in which responsibilities and resources are shared among land owners and land

management agencies. On unincorporated private lands, landowners generally yield responsibility

for fire suppression to state agencies (eg. CalFire). Federal and state land management agencies

are responsible for managing fires that burn on their lands, but they frequently share resources

in order to do so effectively and at lower cost. Because of the cooperative interagency nature of

wildfire management, federal, state, local, and tribal governments have collaborated to develop a

national wildfire policy that provides fire managers with a set of consistent goals and guidelines for

fire management (Wildland Fire Leadership Council, 2014). However, while the national strategy

provides guiding principles forwildfire suppression, each incident presents unique challenges and no

national policy document can prescribe a blueprint for management on every incident. Even where

national forests or other local units have developed local fire policies or plans, wildfire incidents

will vary in firefighting resources available, weather conditions, and specific assets threatened. The

emergency nature of wildfires requires that fire managers be allowed a high degree of discretion to

make strategic decisions to minimize losses.

Fire suppression proceeds in two phases. Upon initially discovering a fire, the nearest fire

management authority will usually attempt to quickly extinguish it in what is known as the “initial
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attack.”4 When fires escape managers’ initial attempts at containment, fire suppression enters

extended attack. During extended attack, fire managers rely on three sets of tactics: direct attack,

aerial attack, and indirect attack (NWCG, 2017). Direct attack includes tactics in which firefighters

directly apply treatment to burning fuel. Direct attack tactics are typically used when fires are

relatively small, which enables firefighters to work close to burning material and physically smother

the flames, or apply water or chemical retardant. Aerial attack involves applying water or chemical

fire retardants from the air using helicopters or fixed-wing aircraft. Finally, indirect attack includes

fire suppression activities that take place at some distance from the perimeter of the actively burning

fire. For example, fire managers frequently work in advance of a fire’s spread to construct fuel

breaks, areas where burnable material has been removed in order to stop a fire’s spread. Fuel breaks

can be constructed using hand tools or heavy equipment, or by “backburning”, which involves taking

advantage of favorable wind conditions and setting fire to fuels in the main fire’s path, thus creating

a fuel break. Fire managers can also take advantage of pre-existing fuel breaks, such as roads.

In choosing how to deploy suppression resources, fire managers face a set of loosely-defined

incentives. Managers do not own the assets they are charged with protecting. Therefore, their

decision-making is subject to a variety of bureaucratic incentives including intrinsic motivations,

pressure from politicians and stakeholder groups, and concerns over the career or personal liability

consequences of their decisions. Similarly, fire managers are not directly responsible for the

financial costs of their stategic decisions. Indeed, even the agency employing fire managers may

not face direct opportunity costs of suppression spending since suppression is frequently funded

out of emergency funds rather than through appropriations (Donovan & Brown, 2005; Taylor,

4Even where federal lands intermingle with state and private lands, land management agencies generally have agree-
ments that allow the nearest fire management authority to respond to ignitions, regardless of the specific jurisdiction
on which it occurs.
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2019). While incentives facing fire managers are poorly defined, we follow much of the fire

management literature in assuming that fire managers simply choose strategies to minimize the

sum of suppression costs and wildfire damages (Sparhawk, 1925; Donovan & Rideout, 2003).

Importantly though, we allow weights to be determined empirically, and avoid making assumptions

about how bureaucratic incentives bear on the relative importance managers give to costs and

protection of various assets.

Finally, the decision-problem fire managers face is complicated by the fact that, as noted pre-

viously, wildfires are a fundamentally spatial-dynamic phenomenon. To manage them effectively,

fire managers must be foward-looking over space and time, anticipating where a fire might spread

and what resources it might put at risk. Their expectations are guided by experience, knowledge of

fire behavior and weather, and a series of sophisticated wildfire simulation software tools, includ-

ing FARSITE (Finney, 1998) and FSPro (Finney et al., 2011), developed to aid fire management

decision-making. Wildfire simulation models integrate data on topography, weather, and fuels

within a physical model of fire behavior to predict how these elements come together to influence

wildfire spread. These predictions provide fire managers with information about which portions

of the landscape face the greatest threat. In the empirical model, we use fire simulation models to

help control for effects of spatial variation in fuels and topography on wildfire spread.

3 Theory

This section develops a theoretical model of the decision problem facing fire managers in order to

motivate the empirical analysis of factors affecting fire spread. The theory does this in two ways.

First, it emphasizes the spatial-dynamic nature of the fire manager’s problem, and the role that
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uncertainty plays. Fire spreads in multiple directions over space and time, and an increased level of

suppression effort does not guarantee a fire’s extinction in a given direction-of-spread. Therefore,

how managers allocate effort across directions-of-spread will depend on the spatial distribution of

at-risk assets, and the manager’s assessment of the likelihood the fire will reach those assets if she

is not successful in stopping the fire at its current point-of-spread. Second, the model provides an

implicit policy function describing fire manager’s optimal allocation of suppression effort, which

motivates the specification of the empirical model developed in the next section.

To begin, we allow to fire spread in multiple discrete directions, indexed by ℓ, from its ignition

point. In order to avoid tracing fire spread across both distance and time, we assume the fire burns

at unit speed in all directions. Therefore, at time C = B, the fire is distance B from its ignition point in

each direction ℓ, conditional on it not yet having been extinguished in that direction. Values-at-risk

in location Bℓ are described by the vector xBℓ. If the fire burns to distance B in direction ℓ, the

fire destroys assets present at that location, and fire managers lose utility D(xBℓ). Ignitable fuels at

distance B in direction ℓ are given by ABℓ. At each location Bℓ, the probability the fire is extinguished

is a function of both fuels in that location and effort 4Bℓ expended toward suppressing the fire.

Therefore, we write the probability the fire is extinguished at point B, conditional on reaching point

B, as _(4Bℓ, ABℓ), and assume _(·) is decreasing in fuels, and increasing in effort. Additionally, we

assume that the marginal effect of effort on extinction probability is decreasing in fuels. The fire

manager allocates effort across directions-of-spread ℓ in order to minimize expected losses across

all directions. We define yB as a 1 × ! vector of state variables, where ! is the total number of

directions over which the fire can spread. Each element HBℓ of yB is a binary variable equal to zero

if the fire has not yet been extinguished in direction ℓ at distance B. Therefore, the law of motion
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for each element of yB is:

HB+1,ℓ =



0 with prob. 1 − _(4Bℓ, ABℓ) if HBℓ = 0

1 with prob. _(4Bℓ, ABℓ) if HBℓ = 0

1 if HBℓ = 1

(1)

Managers are subject to a budget constraint, which says that they cannot expend more than 1̄ total

effort over the course of the fire. The remaining budget at time B is denoted 1B and evolves according

to 1B+1 = 1B −
∑!
ℓ=1 2(zBℓ)4Bℓ, where 10 = 1̄ and zBℓ is a vector of location-specific characteristics

that affect marginal costs of suppression at location Bℓ.

We can now write the fire manager’s problem as a dynamic program in discrete time. In each

period B, the fire manager’s problem is to solve:

+B (yBℓ, 1B) = max
4B
−

!∑
ℓ=1
(1 − HBℓ)D(xBℓ) + VEH

[
+B+1(yB+1, 1B+1) |eB

]
(2)

subject to equation 1, 1B+1 ≥ 0, and the law of motion for 1B. To solve this problem, the manager

will choose e∗B such that:

_4 (4∗Bℓ, ABℓ)E
[ m+B+1
mHB+1,ℓ

(e∗B)
]
= 2(zBℓ)E

[m+B+1
m1B+1

]
(3)

for all directions ℓ. Though it is not possible to find a closed-form analytic solution to this problem,

this condition nevertheless provides some intuition regarding managers’ optimal allocation of effort

across directions. The condition says that managers should choose effort to equate marginal benefits

with marginal costs across all directions of spread. The left-hand side of the condition represents
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marginal benefit of suppression. Effort affects the continuation value +B+1 through its effects on

extinction probability and expected avoided losses D(xℓB). For directions of spread with greater

assets, increasing extinction probability before the fire reaches those assets may provide greater

benefits. However, because marginal effects of suppression effort on extinction probability are

decreasing in fuels A, the fire manager should also consider the landscape and allocate effort across

directions at appropriate and opportune moments. The right-hand side of equation 3 represents

marginal costs of suppression effort. Increases in effort draw down the remaining budget and thus

decrease the continuation value.

There are a number of ways this model abstracts from reality. In reality, managers can take

indirect actions such as building a fuel break in advance of a fire’s spread. While the model

explicitly allows managers to take action only at the fire’s current point of spread, indirect attacks

are considered implicitly by allowing managers to “save” against their budget 1. If the marginal

effect of effort on probability of extinction is increasing in effort over some range of efforts, it may

be worthwhile for the fire manager to wait to spend the large portions of their fire management

budget at once. More significantly, the model requires that fires spread linearly over independent

“directions of spread.” In reality, fires spread stochastically across a two-dimensional landscape.

Unfortunately, realistically accounting for the non-linearity of fire spread would yield a high-

dimensional spatial-dynamic model. Theoretical solutions to such a model would be numerically

as well as analytically intractable. Empirically evaluating such a model would be impractical.

Simplifying the managers’ problem in this way significantly reduces the dimensionality of the

problem while retaining insight regarding its spatial-dynamic nature.
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4 Empirical model

4.1 Fire spread distance as duration

In order to estimate the effects of natural factors and wildfire manager suppression effort on

fire extinction probability, while accounting for the spatial-dynamic nature of the fire manager’s

decision problemdescribed in section 3, we adaptmethods fromduration analysis to a spatial setting.

Consider a fire burning in a single direction. At any point along the fire’s path of spread, there is

some probability that the fire will stop its spread. In the language of duration analysis, the fire “exits

the state.” Therefore, we draw a parallel between fire spread distances and durations and apply

tools from duration analysis. The extinction probability, or the probability a fire is extinguished at

distance B from its ignition point conditional on it not yet having been extinguished, corresponds

to a hazard rate. We model the extinction probability as depending on natural characteristics (AB)

and fire suppression effort (4B), both of which vary over space. Spatially-varying data on within-

fire allocation of suppression effort is unavailable. Therefore, motivated by the theoretical model

described in the previous section, we proxy for effort using observable factors that affect the costs

and benefits of fire suppression in a given location.

We write the fire extinction probability as _(B, 4B, AB; \), where \ is a vector of parameters.

Using standard derivations from duration analysis, the cdf of fire spread distance can be written:

� (B) = 1 − exp
[
−

∫ B

0
_(B, 4B, AB; \)3B

]
. (4)

Since fires potentially spread in 360 degrees from their points of origin, we divide the landscape

around each ignition into ! directions of spread, where directions of spread are indexed by ℓ. We
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then divide each direction of spread into distance intervals, where each interval< defines a grid cell

spanning the distance (0<−1,ℓ, 0<,ℓ] in direction ℓ for < = 1, . . . , " . We define H<ℓ as equal to 1

if the fire stops burning within 0<−1,ℓ and 0<,ℓ kilometers from the ignition point, and 0 otherwise.

Each direction of spread is observed up until the interval at which it stops burning, which is denoted

"ℓ, or until the maximum distance " . If the fire continues to burn in direction ℓ upon reaching

distance " , the fire-direction observation is right-censored.

We apply grouped duration data methods (e.g. Sueyoshi, 1995) because our measure of fire

spread distance is observed within discrete distance intervals. Using equation 4, the probability a

fire is observed to stop burning within the interval (0<−1,ℓ, 0<,ℓ] along direction of spread ℓ can be

written:

Pr(H<ℓ = 1|H<−1,ℓ = 0, < ≤ ") = 1 − exp
[
−

∫ 0<ℓ

0<−1,ℓ

_(B, 4ℓ, ABℓ; \) 3B
]
. (5)

Under the assumption that factors affecting extinction probability are constant within interval

<ℓ, we define w<ℓ to be a vector describing 4B and AB within the interval. We then define

U< (w<ℓ; \) = exp
[
−

∫ 0<

0<−1
_(B, 4B, AB; \)3B

]
, the probability a fire is halted within (< − 1, <].

We assume that conditional on w<ℓ, the probability the fire is extinguished is independent across

intervals within a single direction of spread. Then the likelihood function for a single fire-direction

observation can be written:

Lℓ (\ |"ℓ) =
(
1 − U< (w<ℓ; \)

) "ℓ−1∏
<=1

U< (w<ℓ; \), (6)

where the first term represents the probability that the fire will stop burning within interval "ℓ, and
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the second term represents the probability the fire continues to burnwithin each of the intervals prior

to interval "ℓ. Further, for the purposes of deriving the overall likelihood function, we maintain

the assumptions that, conditional on w<ℓ, U< (w<ℓ; \) is independent across fires and directions of

spread. This latter assumption is unlikely to hold in reality. For example, a fire that spreads a great

distance to the northeast is also more likely to spread a great distance to the north-northeast. In

section 4.3, we will discuss how we test the model’s robustness to non-independence among fire

spread directions. For now, however, we maintain this assumption and use it to write the overall

likelihood function over ! directions of spread and  fires as:

L =
 ∏
:=1

!∏
ℓ=1

"ℓ∏
<=1

(
1 − U< (w<ℓ; \)

) H<ℓ:U< (w<ℓ; \) (1−H<ℓ: ) . (7)

This likelihood function is the same form as the likelihood function of a standard binary response

model, where the particular binary response model to be estimated will depend on the specification

of the probability _(·) (Jenkins, 1995; Sueyoshi, 1995).

4.2 Specification of spread-distance model

In order to estimate equation 7, we assume extinction probability is of the form:

_(B, 4B, AB; \) = exp
(
4<ℓ + A<ℓ

)
_0(B) (8)

where 4<ℓ is a variable summarizing effort and A<ℓ is a variable summarizing the effects of landscape

and weather conditions on extinction probability. That is, we assume that the extinction probability

takes the form of a standard proportional hazard model. In allowing _0 to vary in B, the proportional
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hazard model allows for duration dependence. This is important in modeling fire spread distance

because fires that grow large are more likely to continue to burn. Letting X< = ln
∫ 0<

0<−1
_E3E, and

using equation 5, extinction probability can be written:

U< (w<; \) = exp
[
−

∫ 0<

0<−1

exp(4<ℓ + A<ℓ + W<) 3E
]
≡ �

(
4<ℓ + A<ℓ + X<

)
. (9)

This is the cdf of the complementary log-log distribution, implying that a proportional hazard

model corresponds to an easily-estimated complementary log-log model with distance-interval

fixed effects. Distance-interval fixed effects account for duration dependence in a non-parametric

manner that makes no assumptions regarding the form of duration dependence.

According to the theory developed in section 3, effort at a given location depends on costs

of suppression as well as the benefits. Benefits are a function of assets protected by suppression,

including assets at the fire’s current location and, potentially, assets farther in the direction of spread

that are protected by suppression of the fire at that location. Costs include costs of fighting the fire

at its current location, and expected suppression costs if the fire is allowed to spread. Therefore, we

write effort as 4<ℓ =
∑ā
a=0 V

ax<+a,ℓ + Waz<+a,ℓ, where benefits and costs of suppression in location

<ℓ are described by vectors x<ℓ of assets-at-risk, and z<ℓ of factors affecting costs. Suppression

effort is specified as a function of “spatial leads” of benefits and costs of suppression up to ā cells

away.5

A variety of physical variables—including topography, forest conditions, fuel moisture, wind,

and temperature—can interact in complex ways to affect fire spread. In order to account for the

5In the preferred specification, we also allow suppression effort to depend on assets and factors affecting costs in cell
< − 1, ℓ. That is, we let a0 = −1 and include a single spatial lag. We will describe why this is reasonable after
discussing the set-up of the data.
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combined effects of these various factors, we rely on outputs from a USFS fire simulation tool. The

simulation tool, which we will describe in greater detail in the following section, uses observed

conditions at the time of a fire’s ignition to predict how a fire will spread over space. Specifically,

it predicts landscape-wide surfaces of fire arrival times and fire intensities, were the fire allowed

to spread uncontained. We denote time of fire arrival at location <ℓ as )<ℓ and use the difference

Δ) = )<ℓ − )<−1,ℓ to account for the combined effects of physical factors on fire extinction. Since

fire extinction may only become more likely once rate of spread has slowed sufficiently, we allow

Δ) to influence the complementary log-log index function through the non-linear function A (v<ℓ),

where v<ℓ is a vector of variables, including variables output from a fire simulation tool, that

describe combined effects of physical factors on fire spreaad across the landscape. In summary, the

complementary log-log distribution we estimate is:

�

( ā∑
a=0
{Vax<+a,ℓ + Waz<+a,ℓ} + A (v<ℓ) + X<

)
. (10)

4.3 Identification & inference

The key identifying assumption in this paper is that, after controlling for observed natural factors

that affect fire spread, random factors that affect fire spread are uncorrelated with effort. A threat

to identification would exist if there were omitted factors that affected extinction probability and

were correlated with effort. For example, population within an interval might be correlated with an

area’s tendency to burn, even after controlling for natural factors. Therefore, identification of the

effects of assets-at-risk on suppression effort rests in large part on how well simulated fire spread

variables account for the landscape’s tendency to burn.
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As indicated above, the assumption that extinction probabilities are independent across direc-

tions of spread is likely false. Derivation of equation 7 requires the independence assumption,

therefore violations of independence may bias coefficient and standard error estimates. We adopt

several strategies to test the sensitivity of results to violations of this assumption. First, we estimate

a linear probability model and compare the resulting coefficient estimates to marginal effects from

equation 10. Since the LPM does not rely on the independence assumption for unbiasedness, this

comparison provides a check for possible bias in marginal effects estimated from equation 10. As

a second test, we vary the number of directions of spread ! within each fire and test how results

depend on how finely spread directions are partitioned, since correlation among spread directions

should decrease as the number of directions of spread within each fire is reduced. Finally, we

include fire-specific fixed effects in our preferred specification of equation 9. Fixed effects account

for a specific form of non-independence in probability of extinction across fires—when fixed differ-

ences exist in probabilities of extinction across fires. To ensure appropriate inference with respect

to the marginal effects of suppression effort under violations of the independence assumption, we

cluster standard errors by fire (Cameron & Miller, 2010).

5 Data

To estimate the model of fire spread-distance, we use three primary categories of data: fire

perimeters and ignition locations, determinants of suppression effort, and physical determinants of

fire spread.
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5.1 Wildfire data

Data describing areas burned come from the Monitoring Trends in Burn Severity (MTBS) project

(MTBS, 2014). Since 1984, the MTBS has used Landsat satellite imagery to map the geographic

extent of all fires greater than 1000-acres in size in the western U.S. Therefore, estimated effects of

suppression and variation in suppression effort across groups should be interpreted as representing

suppression within the subset of fires that escape initial containment and grow to be relatively

large. It is possible that suppression on these incidents differs from suppression on the broader set

of wildfire ignitions, which would cause selection bias. For example, fires may fail to reach the

1000-acre threshold for inclusion in the MTBS data set because they occur in especially dangerous

areas, and thus induce a more forceful response, or because they are weaker or more susceptible

to suppression. The former is not a significant concern, since we account for variation in risk at

each ignition point by proxying for effort using the spatial distribution of assets-at-risk. The latter

has potential to bias estimates of suppression effectiveness, but would tend to bias estimates toward

zero.

Ignition locations are from the Fire Program Analysis Fire Occurrence Database (Short, 2017),

which provides a comprehensive database of wildfires within the U.S. from 1993-2015 using a

variety of federal, state, and local sources. Fires within the database include coordinates of each

fire’s point of origin accurate to within 1 km. The database includes even small ignitions that never

grew to be threatening fires. In addition to restricting our attention to the set of fires that grew large

enough to be mapped by MTBS, we focus on fires in the western U.S. in years 1999-2015 whose

ignitions were within 10 km of the wildland urban interface.6 We focus specifically on the western

6Wildland urban interface areas are those where developed residential areas intermingle with or are directly adjacent to
large areas of wildland vegetation (US Department of Agriculture and Department of Interior, 2001). Radeloff et al.
(2005) mapped wildland urban interface across the U.S. at the Census block level.
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U.S. because wildfire hazard is a significant concern in the region, and because fire regimes in the

western U.S. are distinct from those in the east. The sample of fires is restricted to fires beginning

within 10 km of wildland urban interface for two reasons. First, due to concern over protection of

private property, fires that begin within 10 km of wildland urban interface are likely to induce the

most forceful suppression responses. Indeed, some fires that begin in very remote areas are not

suppressed, and are instead managed to provide ecological benefits. Second, one of our interests

is differences in suppression on behalf of varied communities. This set of fires includes only fires

that directly threaten at least some human communities. Finally, we exclude from the sample all

“complex” fires, large incidents in which multiple ignitions are jointly managed due to their close

proximity to one another.

The remaining 1,503 fire ignitions, locations of which are shown by markers in Figure 1,

comprise the full sample of fires analyzed in regression models that make use of Census data to

measure assets at risk. As described further below, we also explore measuring assets at risk using

assessors’ data on housing locations and values.

To adapt the empirical model from the previous section to the data, we divide the area sur-

rounding each wildfire ignition point into ! directions of spread. Figure 2 provides an example.

In the primary set of results, ! equals 24 and each direction of spread has a central angle of 15

degrees, though we check robustness of our results to varying values of !. We further divide each

direction of spread into a series of 1 km distance intervals, up to a maximum distance (") of 20

km, creating a circular grid surrounding each ignition location. We overlay the circular grid with

the corresponding wildfire perimeter and code the fire as being extinguished (H<ℓ = 1) within a

cell if fire fails to reach cell’s centroid.7 We code all prior cells (those nearer to the ignition point)

7Coding intervals as burnt if the fire burns any portion of the interval does not substantively change results.
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within the direction of spread as burnt (H<ℓ = 0). We refer to the distance interval at which the fire

is first extinguished within each direction as interval "ℓ, and we drop all observations within each

direction ℓ for which < > "ℓ. Fires sometimes spread in irregular non-convex patterns, and they

may return to a direction of spread from which they have previously been extinguished. We treat

fires as remaining extinguished once they have first been extinguished within a direction of spread.8

Figure 4 shows the distribution of fire spread distances. For almost 90% of spread-directions,

fires are extinguished within 5 km of the ignition point. Fewer than 0.5% of spread-directions are

right-censored by the maximum distance of 20 km, implying that estimates are unlikely to be biased

due to omission of burnt areas beyond the maximum distance.

5.2 Determinants of fire suppression effort

Fire suppression effort is a function of at-risk assets within a given direction of spread, and of

costs of suppression. To account for variation in suppression effort on behalf of populations at

risk, we use a combination of U.S. Census data, collected at the block and tract-level, and parcel-

level assessors’ data. Census data describe the spatial distribution of households and population

demographic characteristics, including income, a proxy for housing value. The primary advantage

to Census data is that they are available across the full time-span and spatial extent of the full sample

of fires. A disadvantage is that some variables are observed at relatively coarse spatial scales. While

housing variables are available for the 2000 and 2010 censuses at the block level, income and many

other demographic variables, including race, are available only at the Census tract-level. To map

Census block and tract-level data to the circular grids surrounding each ignition point, we assume

8An alternative would be to code H<ℓ as 0 until the cell within direction ℓ from which the fire is extinguished for the
final time. Applying this alternative coding scheme does not substantively change results.
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that populations are uniformly distributed within each Census block, and that Census blocks are

demographically uniform within each tract. Given the large area of many Census tracts in rural

parts of the western U.S. and the uneven nature of housing distributions across these large tracts,

this approach may result in significant measurement error for tract-level income variables.

To further investigate effects of housing values on suppression effort, wemake use of parcel-level

county assessor’s data from CoreLogic, Inc. These data provide higher spatial resolution, as well

as a direct measure of the value of structures threatened by each fire.9 The primary disadvantage to

these data, however, is that our data are limited to assessed values in 191 of 413 western counties

from years 2010 and 2011. Property values may likely be influenced by the occurrence of a fire.

In order to ensure that property value estimates are not affected by fires in the sample, we focus on

fires occurring after 2011. Therefore, when using assessors’ data the sample is limited to those 179

fires indicated by red triangular markers in Figure 1.10

As is clear from Figure 2, circular grid cells vary in area. The increase in affected area as fire

spreads away from its point of origin captures a natural feature of spatial dynamic phenomena;

spread may be more damaging, and more costly to control, as it proceeds and the perimeter of the

affected area expands (Epanchin-Niell & Wilen, 2012). Consistent with this feature of fire spread,

we use area-dependent measures to capture both benefits and costs of controlling fire within a grid

cell. Within models using Census data, we proxy for the number of homes in a cell using the total

number of housing units. As a proxy for the total value of homes within each cell, we use total

housing units multiplied by per-capita income, which we refer to as “total income.”11 To allow that

9Wemeasure structure value as the difference between the assessed property value and the assessed land value for each
parcel.

10These fires are also included within the full sample, indicated by black circular markers.
11In theory, the number of housing units an area could affect both benefits of suppression and costs of suppression, if
suppression costs vary by housing density. We expect differences in effects of density on fire spread will be captured
by our fire simulation model outputs, which will be described in the following subsection. Nevertheless, because our
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fire managers may undertake greater suppression effort on behalf of higher income residents, we

also include per capita income. While not central to our analysis, it would be of potential interest to

explore differences in suppression effort by race or by other demographic characteristics. However,

due to a lack of variation in Census race variables, we focus on differences in effort by income and

property value.12

Formodels using assessors’ data, we usemeasure analogous variables for each grid cell: number

of residential properties, average value of residential properties, and total value of residential

properties. More important than the value of residential properties within a cell are the value of

structures, since land burned by a fire may still retain a significant portion of its value. While some

counties collect assessed land values, which could be subtracted from assessed property values

to yield a measure of structure value, assessments of land value are generally less accurate than

property value assessments, and they are not collected by many counties. Therefore, in assessor’s

data models we use residential property values and consider them to be a proxy for residential

structure values.

In its first panel, Table 1 summarizes demographic characteristics by distance from ignition

point. There is a clear trend in population density (as well as total income) over distance from

the ignition point. This is likely due to selection; a fire is more likely to grow to be large,

and therefore to be included in the sample, if it begins in a more rural location. This suggests

that, in estimating the effect of population on extinction probability, controlling for distance from

ignition may be important to account for secular trends in demographic characteristics as well as

to control for effects of duration dependence. Though protection of private property is a primary

specification includes distance from ignition effects, which in our model control for the area of each circular grid cell,
including the number of homes rather than housing density has a minor effect on results.

12The assessors’ data set contains no demographic data.
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concern of fire managers, they may also be concerned with protecting a variety of other assets,

including watersheds and threatened and endangered species habitat. We collected data describing

the spatial distribution of these assets,13 however they did not have statistically significant effects

on suppression effort, and so they are not included in the models presented here.

To account for differences in the cost of fire suppression over space, we collected data on

accessibility and topographic ruggedness. We measured costs associated with ruggedness by

calculating topographic ruggedness index (TRI), which measures the variation in elevation among

a pixel and its neighbors (Riley, 1999; Nunn & Puga, 2012), at the 30 m pixel level across the

landscape surrounding each ignition point. We then averaged TRI within each circular grid cell and

multiplied average TRI by cell area to capture increases in costs due to expansion of the affected area.

We measured accessibility as the total area within each cell that is within 0.5 km of a road. Another

important factor affecting cost of effort is the availability of personnel and equipment resources.

Fire-fighting resources shared across federal and state agencies are dispatched by a network of

command centers according to need and availability (Bayham & Yoder, 2020). Among the models

estimated in the next section are models including fire-level fixed effects. National demand for and

availability of fire-fighting resources varies over time but is likely relatively constant over the course

of a wildfire incident. Therefore, fire-level fixed effects should account for differences across fires

in availability of resources. In its second and third panels, Table 1 summarizes how cost varies

with distance from the ignition point. To better illustrate trends in distance from the ignition point,

the table includes per area measures of these variables.

13We collected data on the watershed significance of circular grid cell US Department of Agriculture (2017), as well as
the threatened and endangered species habitat within each cell (US Fish and Wildlife Service, 2017). For terrestrial
threatened and endangered species, we measured the percentage of each cell classified as critical habitat, and for
riparian species we measured the percentage of each cell that is within 0.5 km of threatened streams.
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5.3 Physical fire spread variables

Finally, we control for natural factors affecting fire spread through inclusion of outputs from a

model of fire spread. The USFS has developed various fire simulation software (including Farsite,

Flammap, and FSPro), which differ in their applications within fire management. We use the

Minimum Travel Time (MTT) model, which is the foundational fire simulation model underlying

several of these programs, including Flammap (used for landscape-scale wildfire risk assessment

and planning) and FSPro (used within wildfire incidents to assess uncertainty and aide decision-

making). Rather than explicitly predicting how a fire perimeter will expand across the landscape,

MTT calculates the minimum travel time necessary for fire to travel among a two-dimensional

network of nodes across the landscape. From these travel times, it interpolates fire arrival times. A

key advantage of MTT is that it approximates more accurate models of fire behavior with relatively

low computational cost (Finney, 2002), making it ideal for retrospective simulation of thousands

of historical wildfires. MTT takes as inputs features of the landscape such as elevation, slope, and

aspect, and characteristics of vegetation on the landscape. As well, it requires the user to specify

initial fuel conditions; fuel moistures then evolve over the course of the fire simulation. Topographic

data and time-varying vegetation and fuels data come from the Landfire project (Landfire, 2014),

which provides remotely-sensed landscape data at a 30 m resolution.14 Finally, MTT simulations

take into account weather and wind values. We collected observed wind speed and wind direction

at the time of each ignition from its nearest Remote Automated Weather Station (RAWS station).15

14Vegetation characteristics comprise canopy cover, canopy height, canopy base height, canopy bulk density, and
fuel models, which describe characteristics of fuels and how they respond to fire. Landfire collects vegetation
characteristics from remote sensing data with a resolution of 30 m. Since 2008, Landfire vegetation data have been
updated every two years, but Landfire was not updated between 2000 and 2008. We use 2000 Landfire data for years
2000-2005, 2008 data for years 2006-2010, and 2010, 2012, and 2014 data for the two years following each of those
updates.

15The RAWS system is a network of automated weather stations, including many in remote locations, maintained
by federal land management agencies to monitor fire danger, air quality, and to provide weather data for research
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Fire simulation models such as MTT perform well in predicting fire behavior and patterns of

fire perimeter expansion across the landsape, but they are not designed to predict the final extent of

a fire’s spread—final fire perimeters output from a fire simulation model are primarily a function

of the length of time the simulation has been allowed to run. Therefore, rather than limit the

duration of each simulated fire, we allowed each simulated fire to burn until it entirely consumed

the landscape within 20 kilometers of its ignition point. Forcing the 20-km circular grid to be

entirely consumed by fire generates a series of landscape-wide measures describing how fire would

be expected to burn within a 30 m pixel, conditional on fire having reached that pixel. Among these

measures are landscape-wide surfaces of fire intensity and fire arrival time. Fire intensity measures

heat generation per unit time within a pixel, while fire arrival time measures the time since fire

ignition at which a fire is expected to reach a given 30 m pixel. We measure arrival time within

circular grid cell<ℓ, which we denote)<ℓ, as the time at which fire is expected to reach the centroid

of cell. Previous studies have used fire rate of spread as a predictor for fire extinction (Peterson

et al., 2009), and it is reasonable to expect that fire will be more likely to stop spreading where it

travels more slowly. Therefore, we calculate Δ)<ℓ = )<ℓ −)<−1,ℓ,16 and use this discretized rate of

spread between cells as our primarily predictor of the effects of physical factors on probability of

fire extinction.17 We simulated fire spread for each of the 1,503 wildfires in the sample. An example

of how MTT outputs are used is provided in figure 3. Panel A illustrates the surface of simulated

arrival times across the landscape surrounding an example fire ignition. Panel B illustrates the

outcome of averaging arrival times within cells, and taking differences across successive cells.

MTT does not simulate fire spread within areas without fuels (eg. highly urbanized areas or

purposes
16For cells such that < = 1, Δ) = )<ℓ
17In some cases, fire spreads in irregular patterns such that Δ) < 0. In these cases, Δ) is recoded as missing.
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bodies of water). Therefore, we recode the average arrival time of a fire within a circular grid cell

as missing if fuels are absent for more than 50 percent of pixels within a cell. Fire rate of spread

may affect fire extinction in a non-linear way, and fire is more likely to stop its spread when it

reaches areas without fuels. In the spread distance model described by equation 10, we account

for effects of rate of spread on extinction using ln(Δ) + 1) as well as a variable indicating whether

the majority of 30 m pixels within a cell lack fuels (Δ) missing). We account for intensity using

ln(�=C4=B8CH + 1). Further, we supplement MTT outputs with an indicator variable describing

whether a primary or secondary road crosses each cell, since roads provide a major barrier to fire

spread that is not fully captured by MTT. Altogether, we specify the effects of physical factors on

extinction probability through the function:

6(z<ℓ) = W1 lnΔ()<ℓ + 1) + W2 ln(�=C4=B8CH<ℓ + 1) (11)

+ W31(#> 5 D4;B) + W4"0 9>A'>03<ℓ,

where ln(Δ)<ℓ + 1), and ln(�=C4=B8CH<ℓ + 1) is coded as 0 if fuel is absent in cell <ℓ. The final

panel of Table 1 describes how �=C4=B8CH, ) , Δ) , and the fraction of cells without fuels vary with

distance from the fire ignition point. As one would expect, arrival time) is increasing with distance

from ignition point. Rate of spread decreases with distance from ignition point, while the number

of cells in which fuels are absent increases with distance, suggesting areas farther from a fire’s site

of origin are less likely to be favorable for fire growth.
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6 Results

Because they most accurately measure structures at risk, we begin with an analysis using the

assessors’ data. Table 2 provides results based on estimates of the fire spread model using these

data and the 2012-2015 limited sample. In each column, we include distance-from-ignition fixed

effects. Within this table, we restrict effort to be based only on variables at the fire’s current

point-of-spread. That is, we exclude spatial leads and restrict a0 and ā within equation 10 to equal

0. In columns 1-4, we assume that extinction probability can be represented by an exponential

proportional hazard, which implies equation 7 can be estimated using a standard complementary

log-log likelihood function. For these columns, we report marginal effects calculated at variable

means. Column 1 of the table includes only suppression effort variables. Results suggest that

fires are more likely to go out within cells containing a greater number of residential properties,

especially when the average value of those properties is greater. The marginal effect of average

property value indicates each $100,000 increase in the average value of cell properties increases

the probability of extinction within the cell by nearly 3 percentage points, compared to a baseline

probability of 38 percent. Fires are also more likely to stop spreading in less rugged and more

accessible cells.

Column 2 reports marginal effects from a complementary log-log regression that includes only

fire spread variables. Each variable is related to fire extinction probability with a high degree of

statistical significance. As expected fire speed slows, the probability the will fire go out increases;

for every 10% increase in Δ) + 1, probability of extinction increases by 1.3 percentage points.

Probability of extinction also increases when the fire encounters a cell containing a major road, or

a cell where fuels are absent. When fire encounters a cell where USGS Landfire data record that

27



more than 50% of the cell area contain no fuels, the probability the fire stops spreading increases

by 51 percentage points. Finally, fires are more likely to stop spreading in cells where they burn

more intensely. While this result is initially counterintuitive, it may have to do with the fact that

fires frequently stop their spread along ridgelines, where fire intensity also peaks.

As discussed previously, identification of the effects of fire suppression using assets-at-risk to

proxy for suppression effort requires accounting for effects of physical factors and fuels because

fuels are likely to be spatially correlated with assets at risk. Column 3 includes both effort and fire

spread variables. Both effort and fire spread coefficients generally diminish in magnitude when

included within the same regression. This suggests that, as expected, failing to account for effects

of physical factors on fire spread biases estimates of the effects of suppression effort away from

zero. In column 4, fire fixed effects are added to the regression. Fire fixed effects account for fixed

differences in extinction probability across fires, possibly due to differences in fuel moisture or fire

weather across incidents or availability of resources. Coefficient estimates for housing variables

generally increase in magnitude with the inclusion of fire fixed effects. This suggests that fires that

begin near more populated areas are less likely to spread, perhaps due to additional suppression

effort applied regardless of spread direction.

To test the assumption regarding the form of the fire extinction probability function (equation 8)

and the assumption of independence between fire-spread directions, columns 5, 6, and 7 provide

marginal effects for estimates of equation 10 using logit and probit regressions, and coefficient

estimates from a linear probability model, respectively. Estimates and standard errors are similar

across specifications, which indicates that results are not sensitive to the assumptions used to

develop the model.

Table 3 presents parallel results to Table 2 using Census data and the full set of 1,503 wildfires.

28



Using Census data, we sacrifice some accuracy within our measures of housing and property values

for a substantially increased sample size. Census data allows us to make use of fires across all

western U.S. counties dating back to 1999. Results based on Census data are qualitatively similar

to results based on assessors’ data. Fires are more likely to go out within cells that contain greater

numbers of homes, especially if per capita income within the cell is greater. Table 3 indicates that

an increase in per capita income of $10,000 is associated with a 1 percentage point increase in the

probability fire stops spreading within the cell.

In contrast with the marginal effect of property value found in Table 2, the estimated effect of

per capita income is small. An average household could afford an approximately $100,000 larger

mortgage with $10,000 additional per person per year.18 Yet Table 2 indicates that probability of

extinction increases by approximately 2 percentage points when property value rises by $100,000

per year. The attenuated estimate within the Census data results is likely driven by error in

measuring per capita income, which is measured at the Census tract level. Household units within

each cell are measured using Census blocks, and estimates are quite similar to those within the

assessors’ data results, though they are measured more precisely.

As in Table 2, columns 5-7 indicate results are not sensitive to the choice of extinction probability

functional form, or to the assumption of independence among fire spread directions. To provide a

further test of independence among fire spread directions, Table 4 shows results from regressions

specified as in column 4 of Tables 2 and 3, but estimated using data constructed with alternative

numbers of fire spread directions around each ignition. From column 1 to 3 and from column 4 to

6, fire spread directions become more expansive, and the number of observations per fire declines.

18This assumes a 30-year mortgage with an interest rate of 4%, and that the household contains 2.6 people (the national
average) and spends 25% of its income on housing.
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Nonetheless, results are broadly similar across the columns. As would be expected, estimates

attenuate and standard errors increase as the number of fire spread directions declines, but even in

columns with just six directions of spread, some coefficients are statistically significant. This table

indicate that the assumption of independence discrete directions of spread is not driving results.

For simplicity, specifications presented thus far have assumed that only characteristics of a fire’s

present location affect its spread. As discussed in the theory section though, fire managers may

be spatially forward-looking, and seek to prevent fire spread toward particularly valued areas. In

Figure 5, we present results from models that set ā = 5 and therefore include “spatial leads” that

account for anticipatory behavior among fire managers. Spatial leads included within the effort

function are highly correlated with one another; a cell that contains many homes is likely to be near

other cells with many homes. Therefore, as is typical of distributed lag models, estimates of lead

effects are imprecise and unreliable. To improve estimates of spatial leads we smooth estimates

using a restricted distributed lead model. Specifically, following Almon (1965), we assume that

spatial lag weights follow a polynomial function, where each spatial lead coefficient is defined

as Va =
∑ḡ
g=0 0ga

g.19 The advantages of restricted distributed lag (in this case, distributed lead)

models are that they reduce the the number of parameters that must be estimated, and that they

ensure weights follow a smooth function of a. Their primary disadvantage is that, in doing so,

they impose assumptions regarding the form of the model. Therefore, we also present results from

models estimated using unrestricted spatial leads.

Figures 5a and 5b illustrate distributed lead weights from models based on, respectively, as-

19We modify the Almon weighting scheme slightly for effort variables representing factors correlated with costs
(eg. percentage of cell accessible by road). Upon reaching a cell, high costs may decrease the probability fire is
extinguished there. However, if managers anticipate higher costs were the fire to spread further, they may be induced
to allocate additional effort at the fire’s current point of spread. To account for the possibility that cost variables have
different effects within the reference cell than within lead cells, we relax the restrictions of the Almon and linear
weighting schemes for reference cell cost coefficients.

30



sessors’ data and the limited 2012-2015 fire sample, and Census data and the full sample of fires.

The Almon weighting specification assumes that spatial weights follow a quadratic function. Both

specifications assume weights fall to zero by 6 km from the fire’s current location. Coefficient

estimates for each model are presented in the appendix in Tables A1-A4. As expected, weights

generally decline with distance from the focal cell, falling to zero at approximately 3 km distance.

Results are fairly similar across specifications using unrestricted and Almon weights, though the

tendency for weights to “bounce” up and down is reduced by the use of Almon weights. Similarly

to previous results, fires are more likely to stop spreading as they approach cells with residential

properties, cells with more homes and cells where those homes are worth more (or where per

capita income is greater). A possible concern facing results presented in Tables 2 and 3 is that fire

simulation variables do not adequately control for the effects of fuels on fire spread, and so results

reflect the direct effect of homes on fire spread via fuels rather than effects due to increased sup-

pression effort. Results in Figure 5 provide evidence of spatially forward-looking behavior in fire

management, and provide confidence that suppression effort on behalf of homes is driving results;

residential properties 2-3 km away from a fire’s current location can effect fire spread through their

effect on suppression effort but not through direct effects via fuels.

To aid in interpreting these results, and facilitate comparisons among the magnitudes of housing

coefficients, Table 5 presents predicted changes in probability of extinction based on changes in

housing 1 km from the focal cell. Estimates are based on the assessors’ data model with quadratic

Almon weights. Scenario I shows the difference in probability of extinction when the cell 1 km

beyond a fire’s current extent of spread increases from zero residential properties to the mean

number and value of residential properties among all populated cells. When the number of

residential properties 1 km away increases from zero to 10, each with an average value of $200
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thousand (which corresponds to the average number and value of properties within populated

cells in the sample), probability of extinction increases by 5.9 percentage points above a baseline

probability of 38 percent. In Scenario II, the initial number and value of properties is set at 10 and

$200 thousand, and we test the effects of a number of changes to housing within the cell. First,

we increase the average value of properties within the cell while holding the number of residential

properties constant. Next, we increase the number of properties while holding average value of

properties constant. Finally, we increase the average value of properties, while holding the total

value of properties constant, which requires also decreasing the number of properties within the

cell. These experiments reveal that the weight given to property value is quite high. Doubling the

number of properties while holding average value constant produces only a 0.1 percentage point

increase in probability of extinction. Yet doubling the average value of properties, which yields

an equivalent increase in total housing value, increases the probability of extinction by almost 3

percentage points. Even when the number of properties decreases, increasing the average value

of properties within a cell yields an increase in the probability of extinction (Scenario II.C.). In

Scenario III, the initial number and value of homes are set to higher values. Here, increasing number

of homes within the cell by 10 homes no longer yields a statistically significant increase in the

probability of extinction. However, increasing the average value of homes produces a statistically

significant 2–3 percentage point increase in probability of extinction, depending on whether total

housing value is held constant. The difference between results in Scenario III.A. and III.C. is driven

by the negative effect of total value on probability of extinction (see Figure 5a), which suggests

a diminishing effect of property value on probability of extinction as the number of residential

properties increases.
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7 Conclusion

Understanding and predicting climate-driven changes in risk is critical for many sectors of the

economy. Much work has been done to model the natural systems that underpin this risk. Markedly

less work has been done to understand and model human behavioral responses to environmental

risk and how these responses then feed back into the natural system to alter climate-driven changes

in risk to life, property and health. Endogenous adaptation is likely to play a central role in shaping

many natural hazards under climate change: growth in wildfire occurrence and severity; increases

in heat-related mortality; the spread of vector- and water-borne diseases; and heightened risks from

coastal and inland flooding. In this paper, we develop methods to include endogenous adaptation in

natural hazard risk analysis. Specifically, we synthesize a bio-physical model of wildfire spreadwith

an econometric assessment of fire extinction/suppression to identify the ways in which behavioral

responses to the built and natural environment modify the risk of fire spread relative to the baseline

bio-physical model.

The results of our analysis suggest that human interventions in the form of fire suppression

activities are significantly altering the spatial distribution ofwildfire risk relative to a no-intervention

baseline. We identify how fire extinction probabilities change as wildfire approaches an area of

human habitation. Controlling for a broad set of covariates including fire behavior characteristics

derived from a fire simulation model allows us to attribute differences in extinction probability

across space to differences in human-driven suppression activities on behalf of threatened assets.

In addition to fire suppression activities by public agencies, a variety of factors determine

whether a home is destroyed in a wildfire. Building materials, home maintenance, and landscaping

can substantially influence the likelihood a fire is destroyed in a wildfire (Cohen, 2000; Syphard,
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Brennan, & Keeley, 2014). As well, owners of very high value of homes may have access to

private firefighting services, such as through their insurance policy (Varian, 2019). While these

factors can be important determinants of home loss, they are likely to have a limited influence on

the outcome variable used in this study, the overall area burnt in wildfires. A related threat to

identification would occur if effects of local fire hazard reduction on fire spread in areas with more

homes or higher value homes were not fully captured by our fire simulation outputs. The pattern

observed in spatial lead coefficients, however, suggests that spatially forward-looking suppression

effort undertaken by fire management agencies is indeed driving our results.

While the baseline probability of suppression at a given point along an average fire’s path

through undeveloped terrain is roughly 38%, we find that fire spread is 5.9 percentage points

more likely to be halted when a fire is approaching a typical (in terms of number and values of

properties) inhabited area. Increase the average value of properties in the fire’s path from $200,000

(average) to $400,000 and the probability of suppression increases another 2.7 percentage points.

This second estimate implies that doubling the average value of the homes in a fire’s path (holding

the number of homes constant) yields a suppression response that is roughly half the magnitude of

the baseline response to placing homes in the fire’s path to begin with. While not the focus of our

work, this result provides a new wrinkle to the literature on environmental justice which has shown

that minority and low-income households are disproportionately exposed to environmental harm

(Banzhaf, Ma, & Timmins, 2019b,a; Mohai, Pellow, & Roberts, 2009). Taken together, these two

estimates imply that differential suppression activity based on the priorities of fire managers can

increase the probability of extinction at a given point in a fire’s path by more than 20%.

To simplify our spatial-dynamic analysis, this paper assumed fires spread linearly from their

ignition points. While we believe this simplification is justified, it may lead us to mismeasure
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anticipated directions of fire spread, thus attenuating our estimates of the effect of suppression

activity on fire spread. Nonetheless, given that annual costs of structure loss to wildfires were

estimated to be on the order of $600 million in 2016, the economic impact of even a 20% difference

in probabilty of suppression is likely to be non-trivial.

While this work is only an initial foray into the process of incorporating human behavior into

biophysicalmodels, our estimates clearly demonstrate that a failure to account for the human element

in modeling fire spread could lead to a marked mischaracterization of risk patterns associated with

an increase in fire activity. Further, our modeling demonstrates that, at least in some cases,

incorporating such behavioral elements into biophysical models is potentially straightforward. It is

impossible to extrapolate directly from this analysis to other contexts and processes. However, our

expectation is that as researchers further explore these issues that this scale of import will likely

come to be seen more as the norm than the exception.
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Figure 1: Geographic distribution of fires within the sample. The sample includes 1,503 fires,
years 1999-2015, that were large enough to be mapped by the Monitoring Trends in Burn Severity
project, and that began within 10 km of a wildland urban interface area. Complex fires are excluded.

!!! !!!! ! !! ! !!!! !
!

!!
!

!! !
! !!!! !!!! !! !!! !
! !!! !

!!
! !
!!

! !!
!

!! !
!! !

! !

!! !! !!

!
! ! ! !!

! ! !!
!

!
!

!

!
!! !!!

!
!

!
!!!

! !!
! !!

!! !!
!!

!! ! !!! !!
!

! !!!! !!
!

!!!
! !!!!

!!
! !

!

!!!!
!!!

!!!!! !!
!

!
!

!!!!
! !

!!!
!
!!

!

!!!!!!!
!!!

!
! !
!!!!

! !!
!

!!!!
!

! !!!!!!! ! !
!

! !!
! !!

!
!

! !
!!! !!
! !!!!!!! !! !!

!

!

!! !
!

!
!

! !
!

!
!!

!
!

!
!!

!
! !!
!

!
!

!
!

!
!

!
!

!

!
!!

!
!

!
!

!
!

!
!! !

! ! !

!
!

!! !!!
!

!!!

!

!

!
!!!
!!

!!
!!!!

!
!

!! !

!
!

!!
! !! !

! !!!!

!

!!

!
!!!!

!!!!!

!

!!

!
!

!
!!

!! ! !

!

!
!

!

!!

!

!

!!!
!

!

!!

!

!
!

!!!

!!

!!!!!!!
! !
! !! !

!!

! !!
! ! !

!

!!!

!
!

!!

!
!

!

!

!

!
!! !

!

!!
!

!!
!!

!!

!
!

!
!

!

!

!

!

!

!
!

!
! !

!!

!

!

!

!
!
! !!

!
!!!

! !!
! !

!

!

!

!!
!

!!
!

!
!

!
!

!!

!!
!

!

!
!

! !

!

!
!

! !!

!
! ! !

!

!

!!!
!!!! !! !! !

!
!!!

!! !! !
!! !

!!! !!
!

!!!
!
!

!!! !
!!

!
!!!
!! !!! !

! !
!! !!! !

!

!!
!! !! !!

!
!

! !!!
!!

!!!
!

!
!! !

! !!!
!

!
!

!!
!! ! !
! ! !!! !!!!
! !!

!
!! !!!

!!
!

!
! !

!
!!

!

!
!

!
!! !

!
!

!!
!

!
!! !!!

!

!!
! !!

!
!

!
!!! !

! !!! !!!! !!!!
!

! !

!
! !

!

!
!!!

!
!

!
!!!

!
!

!!!
!!

!

!!

!
!

!!!
!!

!

!
!!

!!!!!
!

!! !!!! !
!

!
! !

!
!

!
! !

!

!

!!!
!

!

!!
!

!

!

!
!!! !
! !!

!
! !! !

! !! !!!

!

!

!

!!!

!

!!! !

!
!

!!
!!
!!

!!
!

!
!

!

!

!

!
!!!

!
! !

!
! !

!
! !!

!!!!
! !!

!! !
! !!

!

!!!
!!

!

!

!
!! !

!
!

!!
! !!!! !
!!

!
!! !! !!! !

!
!!!

!
! !! !! !! !!! !! !! !

!
!

!
! !

!

!
!

!!
!

!
!

!
!!

!
!

!

!

!
! !

!
!

! !! !
!

! !
!!

!
!

!
!

!
! ! !

!
! !
!

!
!

! !!
!

!

!
!

! !
! !

!
! ! !

!! !
!

!
!!!!!!! ! ! !!

!
!! !!!!!! !

!! ! !!!
! !!!! !! !

! !!! !!! ! ! !!! !!! !! !! !!!!! ! ! !!
!

!! ! !!!! !! ! !!
! !!
! !!!! ! !!

!
!

!
!

!!!
! !! ! !!!
!

!
!!!!!! !!!!!!

! !!
!! !!!

! !!
!

! !

!

!
!
!

!!!
! !

! !

!

!

!
!

!

!

! !
!
!!
! !

!!!

!
!

! !!
!

!
!!

!
!

!
!

!!!!!!!!

!
! !

!
!

!

!
!

!!

!!

!
!

!

! !
!

!

!
!!

!

!
!

!
!!

!
!!

!

!

!

!!

! !
!

!

! !!!! !!

! !

!

!

!

!

!

!
!

!
!

!!!

!

!
!!

!! !
!
!

!
!

!

!!
!!

!

!
!

!!!!
!

!
!!!!!!! !! !
!

!
!

!

!
!!

! !
!

!
! !

! !
!

!

!
!

!!
!! !

!!

!
!

!

! !
!! !!! !!!
!!

!
!

!
!!

!! !
!!

! !

!
!

!! !! !!
!!!

! !!! !
! !
! !! !!!! !!!!

!
!!

!
! !! !!! !
!! !!! !

! ! !!!!
!! !

!
!

!! !!!!
!

! !! !

!

!! !!
! !

!!
!

!

!
!!

!!

!

! !

!
! ! !

!!!
! !
!
!

! !
!!!

!

!

!!

!

!!!!! !
!!

!!

!
! !

! !!
!!!

!

!
! !!

! !!

!
!

!
!!!

!!! ! !!
!!

! ! !
!!!

!!
!!

! !!! !
! !! !
!!!

!

!
!

! !!
!

!
!

!
!

! !!
!! !

! !
!
!

!

!!
!

!

!

!
!!

!
! ! !

! !! ! !!!
!!

! !! ! !
!! !!

! !! ! !
!
! !!

!
!

!
! ! !

! !
!!

! !
! !

!! !! !! !!
! !!!

!

##
#

#

#
#

##
## #

### #
# ##### #

# ## #
#

######
##

#
##
#

# ## ## #
##
#

#
#

#

# ###

##
##

# # #
###

#
#

#
####

# #

# ##

## # #

#
#

###
#

#

##

# #

#

#
#

##
##

# #
#

#

##

#

##

#

#

#

#

#

# ##
####

#

#

# #
# ##

#

##
## ###
# #

#

#

###
# ##

##
# #
# ## ##

#
##

#

#
# #
#

#
#######

### ##
#

# #

#

0 250 500 km

#
Ignition locations, 2012-2015
assessor's data sample

! Ignition locations, full sample

40



Figure 2: Illustration describing the construction of the data set. The landscape surrounding each
ignitition point is divided into 24 discrete directions of spread. Each direction of spread is divided
into 1-km distance intervals, up to a maximum distance of 20 kilometers, yielding a circular grid
surrounding each ignition point in the data set. Cells are coded as burnt if fire reaches the cell
centroid.
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Figure 3: Illustration of fire simulation output
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Figure 4: Histogram of fire spread distances. Fire is extinguished within 5 km of the ignition point
for nearly 90% of spread directions. Fires burn beyond the maximum observed distance of 20
kilometers in fewer than 0.5% of spread directions.
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Figure 5: Weights estimated from distributed spatial lead models using housing variables from
Census data and California assessor’s data.
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Table 1: Summary statistics for circular grid cell-level observations, by distance from fire ignition
point

(1) (2) (3) (4) (5)

0-5 km 5-10
km 10-15 km 15-20 km Whole

Sample

I. Full sample

Benefit vars.
No. housing units > 0 .545 .619 .658 .685 .627
No. HU 4.9 21.8 41 65.4 33.1
Housing unit density (housing units/sq. km) 6.23 11 12.5 14.2 11
Per capita income (thousands USD) 29.1 29.1 29.1 29.2 29.1
Total income (millions USD) .172 .727 1.4 2.18 1.11
Cost vars.
Avg. Topographic Ruggedness Index 19.4 17.5 17.3 16.6 17.7
Pct. within 0.5 km of roads 59.8 59.8 59.2 58.5 59.3
Fire spread vars.
) (hours since ignition) 52.4 124 193 208 142
Δ) (hours until arrival in next cell) 16.4 14.2 14.1 14.1 14.8
(No fuels) .157 .223 .249 .413 .26
Fire intensity (kW/hour) 281 307 303 298 297
Contains major road .0723 .112 .152 .187 .13

Number of obs. 179,195 177,895 176,667 175,412 709,169

II. 2011-2015 Assessor’s Data Sample

No. residential props. > 0 .111 .173 .211 .241 .184
No. residential props. 4.5 22.1 39.4 54.3 30
No. res props./sq. km 6.14 10.9 12.1 11.9 10.2
Avg. residential prop. value (millions USD) .292 .288 .307 .305 .299
Total value res. props. (millions USD) 1.48 5 8.95 13.5 7.22

Number of obs. 45,994 45,822 45,721 45,623 183,160
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Table 2: Results from regressions using assessors’ data. Spatial leads are omitted.

(1) (2) (3) (4) (5) (6) (7)

(No. res. props. > 0) .071 .0051 .045 .054 .058 .049
[.043] [.031] [.039] [.041] [.039] [.036]

No. res. props. .0014 .00092 .0012 .0011 .0012 .0014
[.00051] [.00069] [.00046] [.00066] [.00064] [.00063]

Avg. value res. props. (millions USD) .23 .28 .26 .27 .27 .31
[.11] [.092] [.1] [.11] [.11] [.098]

Total value res. props. (millions USD) -.0041 -.001 -.0039 -.0032 -.0037 -.0046
[.0038] [.0034] [.0027] [.0042] [.0036] [.0032]

Topographic ruggedness index -.0041 -.0082 -.0052 -.0046 -.004 -.0031
[.001] [.001] [.00097] [.00087] [.00075] [.00069]

Pct. < 0.5 km from road .00056 -.000018 .00024 .0002 .00016 .00011
[.00025] [.00024] [.00024] [.00022] [.00021] [.00016]

Ln(Δ)1) .1 .045 .1 .092 .09 .091
[.017] [.014] [.017] [.016] [.016] [.016]

Ln(Intensity) .096 .058 .1 .095 .092 .095
[.02] [.012] [.02] [.018] [.018] [.019]

Contains major road .19 .19 .18 .19 .19 .19
[.032] [.031] [.032] [.036] [.035] [.037]

Δ) missing .37 .22 .36 .36 .35 .35
[.046] [.039] [.046] [.046] [.045] [.047]

Specification Comp.
log-log

Comp.
log-log

Comp.
log-log

Comp.
log-log Logit Probit LPM

Fire fixed effects Yes Yes No Yes Yes Yes Yes
Number obs. 11,096 11,096 11,096 11,096 11,096 11,096 11,096
Number fires 179 179 179 179 179 179 179

Note: Marginal effects are reported for complementary log-log, logit and probit specifications; coefficient estimates
are reported for OLS. All models include distance from ignition fixed effects. Standard errors are in parentheses
and are clustered by fire.
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Table 3: Results from regressions using Census data. Spatial leads are omitted.

(1) (2) (3) (4) (5) (6) (7)

(No. HU > 0) .079 .025 .065 .065 .065 .065
[.012] [.0099] [.011] [.01] [.01] [.0097]

No. HU .00096 .00071 .00078 .0013 .001 .00059
[.00036] [.0002] [.00037] [.00044] [.00039] [.00024]

Per cap. income .0012 .00076 .00074 .00062 .00061 .00059
[.00037] [.00029] [.00033] [.00033] [.00033] [.00029]

No. HU x per cap. inc. -.0062 -.0067 -.0048 -.0085 -.0073 -.0015
[.0075] [.0046] [.0076] [.0078] [.0073] [.005]

Topographic ruggedness index -.000016 -.00096 -.00012 -.00012 -.00011 -.000053
[.000069] [.00068] [.00011] [.0001] [.000076] [.000036]

Pct. < 0.5 km from road .0012 .0011 .00094 .00086 .0008 .00067
[.0001] [.00012] [.000093] [.000087] [.000083] [.000074]

Ln(Δ)1) .13 .079 .13 .12 .12 .12
[.0063] [.0057] [.0062] [.0062] [.006] [.0061]

Ln(Intensity) .11 .06 .11 .1 .1 .11
[.0075] [.0045] [.0075] [.007] [.0065] [.0069]

Contains major road .18 .14 .14 .16 .16 .16
[.013] [.013] [.013] [.015] [.014] [.015]

Δ) missing .5 .35 .48 .49 .49 .5
[.016] [.016] [.016] [.017] [.016] [.018]

Specification Comp.
log-log

Comp.
log-log

Comp.
log-log

Comp.
log-log Logit Probit LPM

Fire fixed effects Yes Yes No Yes Yes Yes Yes
Number obs. 88,568 88,568 88,568 88,568 88,568 88,568 88,568
Number fires 1,503 1,503 1,503 1,503 1,503 1,503 1,503

Note: Marginal effects are reported for complementary log-log, logit and probit specifications; coefficient
estimates are reported for OLS. All models include distance from ignition fixed effects. Standard errors
are in parentheses and are clustered by fire.
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Table 4: Results from regressions using Census data. Spatial leads are omitted.

Assessor’s Data Census Data
(1) (2) (3) (4) (5) (6)

(No. res. props. > 0) .053 .066 .049
[.043] [.039] [.049]

No. res. props. -.00059 .00018 .000073
[.00054] [.00016] [.00012]

Avg. value res. props. (millions USD) .25 -.017 .087
[.095] [.076] [.2]

Total value res. props. (millions USD) .0013 -.0014 .0045
[.0028] [.00093] [.0033]

(No. HU > 0) .071 .059 .068
[.011] [.013] [.014]

No. HU .0013 .00072 .00014
[.00069] [.00023] [.000088]

Per cap. income .00083 .00062 .00047
[.00034] [.00036] [.00036]

No. HU x per cap. inc. -.009 -.0084 .00071
[.014] [.0054] [.0022]

Topographic ruggedness index -.0083 -.0033 -.00094 -.00024 -.00017 -.00011
[.0019] [.00062] [.00049] [.00018] [.00012] [.000068]

Pct. < 0.5 km from road .0016 .00039 .0002 .0018 .00058 .00024
[.0004] [.00017] [.00014] [.00016] [.000067] [.00005]

Ln(Δ)1) .09 .084 .12 .11 .13 .14
[.016] [.02] [.024] [.006] [.0067] [.0083]

Ln(Intensity) .058 .12 .16 .068 .15 .18
[.015] [.023] [.032] [.0059] [.0089] [.011]

Contains major road .17 .14 .12 .15 .12 .11
[.035] [.035] [.038] [.014] [.014] [.016]

Δ) missing .33 .35 .42 .41 .48 .53
[.046] [.058] [.077] [.016] [.019] [.024]

Fire fixed effects 48 12 6 48 12 6
Number obs. Yes Yes Yes Yes Yes Yes
Number fires 20,831 5,382 2,558 166,822 41,393 20,589
numfires 170 171 162 1,451 1,394 1,338

Note: Standard errors are in parentheses and are clustered by fire.

47



Table 5: Estimated changes in probability of extinction due to changes in cell housing stocks from
three different baselines 1 km from the focal cell. Results are calculated from a linear probability
model with five spatial leads, restricted using quadratic Almon weights.

No.
res.
props.

Avg. val.
res. props.
(millions
USD)

Tot. val.
res. props.
(millions
USD)

Δ%A (H = 1) SE

Scenario I: Initial values 0 0 0
A. Increase variables to mean within
populated cells 10 .2 2 .059 (.013)

Scenario II: Initial values 10 .2 2
A. Increase avg. value while holding
no. props. constant 10 .4 4 .027 (.0093)

B. Increase no. props. while holding
avg. value constant 20 .2 4 .0011 (.00063)

C. Increase avg. value while holding
total value constant 5 .4 2 .028 (.0092)

Scenario III: Initial values 20 .3 6
A. Increase avg. value while holding
no. props. constant 20 .5 10 .023 (.01)

B. Increase no. props. while holding
avg. value constant 30 .3 9 -.00063 (.0018)

C. Increase avg. value while holding
total value constant 12 .5 6 .026 (.0092)

Note: Initial values in Scenario II reflect approximate average value and number of properties
within populated cells. More precisely, the average value of properties is $170,000 and the number
of properties is 9.75.
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Table A1: Results from linear probability model estimated with 5 unrestricted distributed spatial
leads for variables related to benefits and costs of fire suppression. Housing variables are drawn
from county assessors’ data

Spatial leads
Variable < < + 1 < + 2 < + 3 < + 4 < + 5

(No. res. props. > 0) .018 .077 -.0017 -.033 .0099 -.0048
(.036) (.032) (.026) (.022) (.021) (.023)

No. res. props. .00065 .00018 .00036 .00034 .00033 .00043
(.00064) (.00056) (.00072) (.0004) (.00015) (.0002)

Avg. value res. props. (millions USD) .27 .027 .28 .087 -.029 .059
(.1) (.06) (.097) (.08) (.051) (.069)

Total value res. props. (millions USD) .0046 -.004 -.0017 -.0026 -.0033 -.002
(.0039) (.0042) (.0036) (.0028) (.0023) (.0015)

Topographic ruggedness index -.0039 .00034 .000029 -.00016 -.00013 .00017
(.00078) (.00018) (.000086) (.000097) (.00021) (.00024)

Pct. < 0.5 km from road .00045 -.00044 -.00014 -9.4e-06 .000092 -.00025
(.00021) (.00018) (.00016) (.00014) (.00013) (.00011)

Ln(Δ) 1) .095
(.016)

Ln(Intensity) .097
(.019)

Contains major road .2
(.038)

Δ) missing .36
(.049)

Fire fixed effects Yes
Number obs. 10861
Number fires 178

Note: All models include distance from ignition fixed effects. Standard errors are in parentheses
and are clustered by fire.
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Table A2: Results from linear probability model estimated with 5 unrestricted distributed spatial
leads for variables related to benefits and costs of fire suppression. Proxies for housing come from
the US Census.

Spatial leads
Variable < < + 1 < + 2 < + 3 < + 4 < + 5

(No. HU > 0) .063 -.0055 .013 -.017 .0035 .013
(.011) (.0099) (.0086) (.008) (.0086) (.0085)

No. HU .00049 .00018 .00008 .000017 .000056 4.5e-07
(.00024) (.00014) (.000065) (.000076) (.00007) (.00005)

Per capita income (thousands USD) .0004 .00013 -.00015 .00039 .00036 -.000098
(.00032) (.0003) (.00028) (.00025) (.00026) (.00025)

No. HU x per cap. inc. .0058 -.0076 -.0019 -.0017 -.0012 .00024
(.0063) (.0042) (.002) (.0016) (.0017) (.0014)

Topographic ruggedness index -.00015 -.000075 -.000064 -.000044 -.000076 -3.5e-06
(.00009) (.000065) (.000051) (.000038) (.000034) (.000029)

Pct. < 0.5 km from road .001 -.00035 -.000017 .000033 -.000053 -1.3e-07
(.000094) (.000078) (.000061) (.000052) (.000048) (.000038)

Ln(Δ) 1) .12
(.0062)

Ln(Intensity) .11
(.0069)

Contains major road .16
(.015)

Δ) missing .51
(.018)

Fire fixed effects Yes
Number obs. 86948
Number fires 1499

Note: All models include distance from ignition fixed effects. Standard errors are in parentheses
and are clustered by fire.
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Table A3: Estimated weights for variables related to benefits and costs of fire suppression from a
linear probability model estimated with 5 distributed spatial leads restricted using quadratic
Almon weights. Housing variables are drawn from county assessors’ data.

Spatial leads
Variable < < + 1 < + 2 < + 3 < + 4 < + 5

(No. res. props. > 0) .053 .028 .01 -.0013 -.0064 -.005
(.034) (.018) (.015) (.015) (.013) (.018)

No. res. props. .00056 .00041 .00033 .0003 .00033 .00042
(.00042) (.00027) (.0002) (.00015) (.000088) (.00018)

Avg. value res. props. .2 .15 .12 .08 .049 .022
(.095) (.051) (.055) (.057) (.046) (.065)

Total value res. props. .00043 -.0013 -.0024 -.0029 -.0028 -.0021
(.0024) (.0014) (.001) (.0008) (.00065) (.0013)

Topographic ruggedness index -.0039 .00039 .000015 -.00015 -.0001 .00015
(.00079) (.00018) (.000085) (.00011) (.00005) (.00017)

Pct. < 0.5% km from road .00045 -.00046 -.00012 .000034 7.1e-06 -.0002
(.00022) (.00016) (.000068) (.00007) (.000054) (.000087)

Ln(Δ1) .095
(.095)

Ln(Intensity) .096
(.096)

Contains major road .19
(.19)

Δ) missing .36
(.36)

Fire fixed effects Yes
Number obs. 10861
Number fires 178

Note: All models include distance from ignition fixed effects. Standard errors are in parentheses
and are clustered by fire.

51



Table A4: Estimated weights for variables related to benefits and costs of fire suppression from a
linear probability model estimated with 5 distributed spatial leads restricted using quadratic
Almon weights. Proxies for housing come from the US Census.

Spatial leads
Variable < < + 1 < + 2 < + 3 < + 4 < + 5

(No. HU > 0) .05 .017 -.003 -.0097 -.003 .017
(.0083) (.004) (.0041) (.0041) (.0034) (.0069)

No. HU .00041 .00024 .00011 .000032 5.8e-07 .000016
(.00012) (.000058) (.000031) (.000027) (.000021) (.000039)

Per cap. income .00024 .0002 .00016 .00014 .00014 .00014
(.00027) (.00012) (.00011) (.00012) (.0001) (.0002)

No. HU × per cap. inc. -.0013 -.0025 -.0029 -.0024 -.0012 .00085
(.0028) (.0015) (.00097) (.00085) (.00065) (.0013)

Topographic ruggedness index -.00015 -.000065 -.00007 -.000063 -.000044 -.000013
(.000091) (.000054) (.000027) (.000023) (.000018) (.000025)

Pct. < 0.5% km from road .00099 -.00029 -.000088 .000018 .000031 -.00005
(.000091) (.000056) (.000024) (.000024) (.000019) (.000032)

Ln(Δ1) .12
(.12)

Ln(Intensity) .11
(.11)

Contains major road .16
(.16)

Δ) missing .5
(.5)

Fire fixed effects Yes
Number obs. 86990
Number fires 1499

Note: All models include distance from ignition fixed effects. Standard errors are in parentheses
and are clustered by fire.
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